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　　Abstract　　For simulating mult i-scale complex f low fields like turbulent f low s , the high order accurate schemes are preferred.In

this paper , a scheme const ruction w ith numerical flux residual correction(NFRC)is presented.Any order accurate dif ference approxima-
t ion can be obtained wi th the NFRC.To improve the resolution of the shock , the const ructed schemes are modified w ith g roup velocity

cont rol(GVC)and w eighted group velocity con trol(WGVC).The method of scheme const ruct ion is simple , and it i s used to solve practi-
cal problems.

　　Keywords:　high order accurate scheme , group velocity control , high resolution of the shock.

　　To simulate the multi-scale complex f low fields ,
like turbulence , high order accurate schemes are pre-
ferred.There are many w ay s to const ruct high order

accurate schemes[ 1 , 2] , but most of them are compli-
cated , and a system of linear algebraic equations has

to be solved.In 1992 , we const ructed the fourth or-
der symmetrical compact difference approximation by

using residual correction f rom low er order difference

approximation[ 3] .In 2001 and 2002 , Lerat and

Corre constructed a tradi tional fourth order accurate

approximation w ith residual correction f rom the sec-
ond order accurate dif ference approximation[ 4 ,5] .
These scheme const ructions are simple , but the

schemes w ere const ructed only for the particular cas-
es.In this paper w e present a simple method fo r con-
st ruct ion of the high order accurate schemes using nu-
merical f lux residual correction , and the scheme con-
st ruct ion wi th numerical flux residual correction fo r

more general cases is presented.

When high o rder accurate schemes are used to

solve problems wi th discont inuities , the oscillations

w ill be produced in the numerical solutions.To im-
prove the resolution of the shock , many good schemes

w ith high resolution of the shocks have to be devel-
oped , and many practical problems have been solved

w ith these schemes[ 6—12] .As is known , the to tal

v ariation diminishing (TVD)scheme can capture the

shocks well[ 6] , but the accuracy of the schemes is too

low to simulate the complex f low s with a w ide range

of scales.The dissipation of the scheme is large , and
the accuracy of the schemes will be reduced at the ex-
t reme points.Essentially non-oscillatory (ENO)and

weighted essentially non-oscillatory (WENO )
schemes have high order accuracy , but they are com-
plicated and computer time consuming[ 7—10] .WENO

scheme w as greatly improved in Refs.[ 9 —11] .In
Ref.[ 12] , the behavior of the numerical solutions is

analyzed andGVC is used to improve the resolut ion of

discontinuities.

In this paper , a class of schemes constructed

w ith NFRC is presented.To improve the resolut ion

of the shock , the const ructed schemes are modified

w ith GVC and WGVC.

1　Numerical flux residual correction(NFRC)

Consider a model equation and its semi-discrete
approximation

 u
 t
+
 f
 x
=0 , 　f = cu , 　c = const , (1)

 u j

 t
+

F j

Δx
=0. (2)

Define

Δx
 f
 x j

=F j , 　F j =h j+1/ 2 -hj-1/2 ,

where h j+1/2 is the numerical flux.For the first o rder



upw ind difference approximation we have
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where the upper index (k , +)(in Eq.(3)k =1)
deno tes that the approximation is k th order accurate

for c >0.After Taylo r series expansion f rom (3),
we have
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from which we can obtain the second order symmetri-
cal difference approximation using a discretization of

the residual term on the right hand side of Eq.(4):
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and the upper index (k , 0)means that the approxi-
mation is symmetrical and k th order accurate.From
Eq.(4)we can also const ruct the second o rder accu-
rate upw ind biased dif ference approximation.For ex-
ample , for the case c>0 ,
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After Taylor series expansion from the second order accu-
rate symmetrical difference approximation , we have
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from which we can get the numerical flux w ith the

third order upw ind difference approximation:
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and the fourth order accurate symmetrical difference

approximation:
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From the flux residual correction we can construct the

higher o rder accurate approximations.Fo r example ,
the fif th order upw ind difference appro ximat ion
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the sixth order symmetrical dif ference approximation
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the seventh order accurate upwind difference appro xi-
mation
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the ninth order accurate upw ind dif ference appro xi-
mation
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In the general case , suppose that at g rid points j-k ,
… , j -1 , j , j +1 , …, j+k , we have the 2k o rder

accurate symmetrical difference approximation
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where C is a known constant obtained af ter Taylor

series expansion.With grid points j -k -1 , …, j ,
… , j+k +1 af ter discretization of the terms in [ 　]
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we can get the expression
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The 2(k +1)th order accurate symmetrical numerical

flux can be w rit ten as
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where m ≤0 for the case C>0.The simplest case is

m =0.

2　Operator extrapolation

In Ref.[ 12] it is show n that the oscillations are

created by the non-uniform g roup velocity in the nu-
merical solut ions.The symmetrical and the w eakly

upw ind biased schemes belong to the class SLOW

(denoted as S LW in Ref.[ 12]), and the st rong ly up-
w ind biased schemes belong to the class MEXED(de-
noted as MXD in Ref.[ 12]).The second Pade

scheme belongs to class FAST (denoted as FST in

Ref.[ 12]).To improve the shock resolution it is

suggested to use FST/MXD scheme behind the

shock , and SLW scheme in front of the shock.Sup-
pose that w e have unifo rmly distributed mesh g rid

points j-k , … , j-1 , j , j+1 , … , j+k on which we

can const ruct 2k order symmetrical difference approx-
imation for the first derivative , and(2k -1)th order

upw ind biased difference approximation (m =0).
The correspondingly modified wave numbers are
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, where Kr is related with

the dissipation of the scheme , and Ki is related with

the dispersion.For symmetrical approximation we
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from Eqs.(19)and(18), the following relation(fo r
the case of m =0)can be obtained
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The term in the fi rst brace of the right hand side of

Eq.(20)is related only w ith the dispersion , and the

term in the second brace is related only w ith the dissi-

pation.From Eq.(20)i t can be seen that Ki
(2k ,0)

=

Ki
(2k-1 ,0)

.In this paper , the difference approxima-

tion F
(2k ,0)
j on j -k , … , j -1 , j , j +1 , … , j +k ,

and F
(2k+1 , +)
j on j-k -1 , …, j-1 , j , j+1 , … , j+

k are used as the orig inal schemes to const ruct the

scheme wi th the g roup veloci ty control.In this case

we have K i
(2k+1 , +)

>Ki
(2k , 0)

or D
(2k+1 , +)

(Ki)>

D
(2k , 0)

(Ki)for the most commonly used schemes ,
where D(Ki)is the group velocity of the numerical

solution[ 12] defined by d[ K i(α)] /dα.Although we

have D
(2k+1 , +)

(Ki)>D
(2k , 0)

(K i), the scheme

F
(2k+1 , +)
j may not be MXD.To make the scheme

MXD , a dif ference operator ex trapolation is intro-
duced.

Consider a linear combination
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(2k-1 , ±)
j+1/ 2 =(1+σ)h
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(2k+1 , ±)
j+1/2 -σh

(2k , 0)
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where the scheme is symmetrical and S LW fo r σ=
-1 , and it is dissipative fo r σ>-1.The scheme

w ith numerical flux (21)has the order of accuracy of

O[(1+σ)h
2k-1

, h
2k
] , and the scheme wi th (22)

has the order of accuracy of O(h
2k
).From the above

analysis we can see that the linear combination (22)
can increase both the dissipation and the g roup veloci-
ty with the increasing parameter σ>-1 , but the lin-
ear combination(21)can only increase the dissipat ion

of the scheme with any σ>-1 , and the g roup veloc-
ity of the numerical solutions cannot be changed.In
this paper Eq.(22) is used to const ruct GVC

schemes.The linear operator ex trapolation(22)leads
to enlarged group velocity and the dissipation in the

numerical solutions and make the scheme MXD w ith

σ>-1 w ithout losing the order of accuracy.

3 　 Improvement of shock resolution with

GVC

3.1　Scheme w ith GVC

Ref.[ 12] has shown that to improve the shock

resolution it is suggested to use SLW scheme in front

of the shock , and FST/MXD scheme behind the

shock.Fig.1 and Fig.2 g ive the variations of the
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g roup velocity D(K i)/Dαand Kr as a function α=
kΔx for the case of k =2(fourth o rder accurate)in

scheme w ith (22), and Fig .3 and Fig.4 show the

variations of D(K i)/Dαand Kr fo r the case of k=3
(sixth o rder accurate).

Fig.1.　Variation of D(Ki)/Dαversus α(k=2).

Fig.2.　Variation of K r versus α(k=2).

Fig.3.　Variation of D(K i)/D(α)versusα(k=3).

It can be seen from Figs.1—4 that the scheme

is dissipat ive (σ>-1)and MXD for large σ.The
numerical f lux of the 2k th order schemes af ter modi-
f ication w ith GVC is expressed as

Fig.4.　Variat ion of Kr versus α(k =3).

F
(2k)
j =H

(2k)
j+1/2 -H

(2k)
j-1/2 ,

H
(2k)
j+1/2 =H

(2k ,+)
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(2k ,-)
j+1/2 ,
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(2k ,±)
j+1/2 =

1±SS(j +1/2)
2
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(2 k , ±)
j+1/2

+
1  SS(j +1/2)

2 h
(2k ,0)
j+1/2 , (23)

where  h
(2k , ±)
j+1/ 2 is obtained from (22)and the co rre-

sponding scheme is MXD after operator ex trapola-
tion.In computat ion , the SS function is expressed

as[ 12]

SS(f j+1/ 2)=
1
2
[ SS(f j+1)+SS(f j)] , (24)

SS(f j)=sign(δ
0
x f j ·δ

2
x f j). (25)

For the aerodynamics equations the densi ty ρor the

pressure p can be used as the function f in(25).Ex-
pression (23)makes the scheme MXD behind the

shock and S LW in front of the shock , and therefo re

the GVC requirement is satisfied for improvement of

the shock resolution.

3.2　Weighted g roup velocity control(WGVC)

The above presented NFRC +GVC method is

still diff icult to solve the discontinuity with high pres-
sure ratio fo r the high order scheme (higher than sec-
ond order accuracy:k >1).In this section the so-
called WGVC method is int roduced.Practical appli-
cation shows that good resolution of the shock can be

obtained w ith the following modified GVC scheme

H
(2k ,±)
j+1/2 =

1±SS(j +1/2)
2
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(2 k , ±)
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,

(27)
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g
(2k)
j+1/2 =[ σ0 , j+1/ 2]

2k. (28)

The function σ0 , j+1/2is defined in our computation as

σ0 , j+1/2 =
|δ

+
x f j|

max
j
|δ

+
x f j|+ε

, (29)

σ0 , j+1/2 =
|f j+1 -f j|

|f j+1|+|f j|+ε
, (30)

where ε∝10-5 is a small parameter.From the defi-

nition (28 , 29) it can be seen that g
(2k)
j+1/2 ≈

[ O(σ0Δx)]
2k

and the constructed scheme has 2k or-

der accuracy in the smooth region.With large param-
eter σin Eq.(22)we can enlarge the wave interval

w here the scheme has FST property and increase the

dissipation in the uncontrollable w ave interval w ithout

losing the order of accuracy.σ=3 is used in our com-
putation.The process of scheme const ruction is as

follow s:1)const ruct the high order accurate NFRC

schemes;2)make the upwind biased scheme MXD

w ith operator ex t rapolation;3)modify the scheme

w ith w eighting ;4)control the group velocity of nu-
merical solution for having shock w ith high resolu-
tion.

4　Numerical experiments

The above presented method w as used to solve

practical problems , for example , the propagation of

the linear shock , the steady state shock tube prob-
lem , the Sod model problem , the 2-D Riemman prob-
lem , and the shock-material surface interaction prob-
lem .From the view point of inviscid flow , the thick-
ness of the shock is zero , the derivative does no t exist

at the shock , and therefore the high o rder accurate

scheme does no t help much fo r shock capturing .Our

purpose of constructing the high order accurate

scheme is to simulate the complex flow field w ith the

N-S equations.The numerical ex amples are given in

this section just to show the capability of shock cap-
turing wi th the developed schemes.Eq.(30)is used

in computation.

4.1　1-D steady state shock tube problem

The one-dimensional Euler equations are dis-
cretized w ith bo th the fourth and sixth order accurate

NFRC+WGVC schemes for the cases of M ∞=2 , 5 ,
and 10.Fig.5 show s the pressure dist ribution for the

case of M∞ =10 wi th the fourth order accurate

NFRC +WGVC , and Fig.6 presents the pressure

distribution fo r the sixth o rder accurate NFRC +
WGVC scheme.

Fig.5.　Pressu re w ith the 4th order NFRC+WGVC.

Fig.6.　Pressu re w ith the 6th order NFRC+WGVC.

4.2　1-D Sod model problem[ 13]

The dist ributions of the fluid parameters at the

beginning t =0 are as follow s

p =1 , ρ=1 , u =0;
p =0.1 , ρ=0.125 , u =0.

Figs.7 and 8 give the pressure and densi ty dist ribu-
tions w ith the 4th o rder accurate NFRC +WGVC at

t =0.14.Figs.9 and 10 show the pressure and den-
sity dist ributions w ith the 6th order accurate NFRC

+WGVC.The exact solutions are also given for

comparison.

Fig.7.　Pressu re w ith the 4th order NFRC+WGVC.
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Fig.8.　Density w ith the 4th order NFRC+WGVC.

Fig.9.　Pressure with the 6th order NFRC+WGVC.

Fig.10.　Density w ith the 6th order NFRC+WGVC.

4.3　1-D Shu-Osher shock tube problem

The initial data are given as follows:
ρ=3.857 , u =2.629 , p =10.33 ,

for 0 ≤ x <0.1 ,
ρ=1 +asin( x), u =0.0 , p =1.0 ,

fo r 0.1 ≤ x ≤1.0.
In computation a=0.3 and =40 are used.Fig.11

gives the result with the fourth o rder accurate NFRC

+GVC at t =0.2 w ith number of mesh grid points

N=401.Fig.11 also gives a result w ith number of

g rid points N =5001 which is considered to be the

exact solut ion.The ag reement is quite w ell.Fig.12
presents the result w ith the 6th order NFRC +GVC

w ith the same mesh g rid points.In computation the

parameter σ0 , j+1
2
= 0 (w ithout weighting) in

Eq.(29)is used.

Fig.11.　Pressure w ith the 4th order NFRC+GVC at t =0.2.

Fig.12.　Pressure w ith the 6th order NFRC+GVC at t =0.2.

4.4　2-D Riemman problem
[ 13]

The ini tial distribut ion of the physical parame-
ters is as follow s:
ρ1=1.5 , 　　p1=1.5 , 　 u1=0.0 , 　 v 1=0.0;

ρ2=0.5323 , p2=0.3 , u2=1.206 , v 2=0.0;

ρ3=0.1379 , p3=0.029 , u3=1.206 , v 3=1.206;

ρ4=0.5323 , p4=0.3 , u4=0.0 , v 4=1.206;

The index k of the fluid parameter gk shows that gk

is dist ributed in the subdomain w ith index k (Fig.
13).This problem w as computed w ith the 4th o rder

and 6th order NFRC+WGVC.The density contours
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computed with the 6th order NFRC+WGVC at t =
0.6 are given in Fig.14 , and the pressure contours

are given in Fig .15.

Fig.13.　S chematic diagram for distribution of fluid parameters at

t=0.

Fig.14.　Densi ty contou rs of 2-D Riemman problem at t=0.6.

Fig.15.　Pressure contours of Riemman problem at t =0.6.

4.5　Numerical simulation of R-M instability prob-
lem

The R-M instability is the instability of acceler-

ated material interface driven by moving shock be-
tw een tw o dif ferent media.The R-M instability has

att racted attention of many researchers recently be-
cause of the importance of this kind of problems in in-
ert ial confinement fusion(ICF)and explosion of su-
pernova.As an example , this problem is solved w ith

the scheme developed in this paper.The six th o rder

accurate WGVC method is used to approximate the

convect ion terms of the two-dimensional compressible

N-S equations in cylindrical coo rdinate , and the vis-
cous terms of the N-S equat ions are approximated

w ith the tradi tional sixth order accurate dif ference ap-
proximation.

At t =0 we have a shock as shown in Fig .16
(a).The shock is moving tow ard to the center w ith

shock M ach number Ms=1.2.The Reynolds num-
ber is Re=50000 based on the radius of the averaged

material interface at t =0.0.The light gas is inside

the interface.The initial conditions are given in Ref.
[ 14] .The moving shock will interact w ith the mate-
rial interface.Some results are show n in Fig.16 ,
f rom which we see the development of R-M instabili-
ty.After shock-interface interaction , the reflected

rarefaction w ave goes outw ard , and the t ransmit ted

shock goes tow ard the center.After multiple interac-
tion of the waves betw een the material interface and

the center w e obtain the typical spike-bubble struc-
ture (Fig.16(c)).We can see the phase changing

clearly f rom Fig.16(a)—(c).Fig .16(d)gives the
w ave st ructure showing the interaction betw een the

t ransmi tted shocks at the time t=0.39.

5　Summary

(i)A new method of high order accurate differ-
ence approximation w ith NFRC is presented.The

method is simple , and the scheme w ith any order of

accuracy can be obtained easily.

(ii)A simple linear operator ex trapolation is in-
t roduced to control the dissipation and dispersion of

the scheme.

(iii)The constructed NFRC scheme is modified

w ith g roup velocity control (GVC) and weighted

g roup velocity control(WGVC)to improve the reso-
lution of the shock.

(iv)The const ructed NFRC+GVC (or NFRC

+WGVC)scheme is used to solve physical problems ,
and the obtained results are satisfacto ry.
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Fig.16.　Com puted results at di ff erent t imes:(a)Densi ty contours at t=0.00;(b)density contours at t =0.30;(c)densi ty contours

at t=3.3;(d)pressu re contours at t=0.39.
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